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Abstract: It is argued that the ten dimensional solution that corresponds to the compact-

ification of E8 ×E8 heterotic string theory on half-flat manifolds is the product space-time
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1,2 × Z7 where Z7 is a generalized cylinder with G2 holonomy. Standard embedding on

Z7 then implies an embedding on the half-flat manifold which involves the torsionful con-

nection rather than the Levi-Civita connection. This leads to the breakdown of E8 ×E8 to

E6 ×E8, as in the case of the standard embedding on Calabi-Yau manifolds, which agrees

with the result derived recently by Gurrieri, Lukas and Micu [1] using a different approach.

Green-Schwarz anomaly cancellation is then implemented via the torsionful connection on

half-flat manifolds.
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1. Introduction

In recent years six-dimensional compact manifolds with SU(3) structure have become a

serious option for compactifications of string theories. We have been led to consider SU(3)-

manifolds more general than Calabi-Yau (CY) manifolds both from theoretical and phe-

nomenological considerations.

An SU(3) manifold can be characterized by a geometric quantity known as the intrinsic

torsion, which measures the deviation of the holonomy group of the Levi-Civita connection

∇6 from SU(3) [2]. An interesting subclass of SU(3)-manifolds are half-flat (HF) manifolds.

On a HF manifold half of the possible components of the intrinsic torsion vanish (see [2]

for more details). Certain HF manifolds, dubbed as HF mirror manifolds in [3], arise

naturally from considerations of mirror symmetry in the presence of NS-NS background

fluxes in type II string theories on CY manifolds [4].

Although originating from type II theories these conjectured HF mirror manifolds are

natural compactification spaces for the E8 × E8 heterotic string theory for two reasons.

First, they are considered to be ‘small’ deformations of CY’s. Thus one expects the same

spectrum of low-energy effective fields from them as one gets from CY compactifications.

Indeed, as was noted in [5], implicit in the work of [4] is the fact that the Euler characteristic

of a HF mirror manifold is the same as that of the ‘underlying’ CY manifold, although the

Betti numbers of the two manifolds are different.

The second reason for compactifying the heterotic string on HF mirror manifolds has to

do with moduli-stabilization. Heterotic strings suffer from the apparent drawback that they

offer fewer ‘fluxes’ to be turned-on. On HF manifolds fluxes are geometrically encoded.

In fact HF manifolds may be thought of as CY manifolds on which the Ricci-curvature

has gained non-zero vacuum expectation value.1 Thus to include some of the desirable

features of flux compactifications [7 – 10] in the heterotic setting it is natural to turn to HF

manifolds.

1This point of view regarding the relationship between HF and CY manifolds is currently under inves-

tigation [6].
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The study of heterotic string theory on HF mirror manifolds was initiated in [3] and in

a recent communication [1] the configuration of the background gauge field was explored.

In [1] it has been noted that although the holonomy group of the Levi-Civita connection on

HF manifolds is not SU(3), a version of the standard embedding still leads to the breakdown

of E8×E8 to E6×E8 as in the case of CY compactifications [11]. In reaching this conclusion

(which reverses a previous assertion [3], based on an analysis which excluded the gauge

fields, that E8 × E8 breaks down to SO(10) × E8) the authors of [1] have made use of

the ‘adiabatic principle’ as well as the ‘Gukov superpotential’ derived earlier in [3]. Very

briefly, the adiabatic principle basically treats a HF mirror manifold like a CY, modulo the

fact that some of the forms which used to be closed on the CY are no longer closed on the

HF mirror manifold.

Although, the adiabatic principle is very useful in deriving effective theories (e.g. see [4,

5]) it still lacks complete mathematical justification.2 Thus, in our opinion, it is extremely

important to explore how far one can go in formulating important physical results in the

heterotic string without the aid of such approximations. This is the subject of this note.

In CY compactification [11] the modified Bianchi identity is solved by embedding the

Levi-Civita spin connection into the gauge connection. This procedure has come to be

known as the ‘standard embedding’. However, one of the central results used in this paper

is the fact that the ten-dimensional low-energy effective action of the heterotic string is not

unique [13]. Thus which spin-connection is being embedded depends on the choice of low-

energy variables. Thus, attaching the label ‘standard embedding’ exclusively to embedding

the Levi-Civita connection (which is just one of the possible spin-connections) would be

misleading.

In contrast, the ‘non-standard’ case is the one in which one solves the modified Bianchi

identity without any embedding. In the CY case this involves solving the Donaldson-Yau-

Ulhenbeck equation on holomorphic vector bundles on CY’s. (For an overview of this

procedure see [14]).

This is the usage followed in [1] and here, since we solve the modified Bianchi identity

by embedding a spin-connection into the gauge connection, we use the term ‘standard

embedding’ to distinguish it from any approach that solves the Bianchi identity without

an embedding technique.

In a strict sense, however, there is no such thing as the standard embedding but an

equivalence class of standard embeddings. This reflects the fact that due to an ambiguity

in the anomaly there is an equivalence class of low-energy effective actions for the heterotic

string theory (see [13] and our discussion below.) Thus our standard embedding is a

standard embedding. However, once the low-energy Lagrangian is chosen there should be

a unique choice of standard embedding for a given compactification manifold. In what

follows we shall always use the expression ‘standard embedding’ in this sense.

The standard embedding on manifolds with SU(3) structure is an important problem

and, at least as far as the HF manifolds are concerned, it seems to us that there is a much

more direct and transparent route to some of the same conclusions of [1]. Our approach in

2For an important attempt in that direction, see [12].
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this note is thus complementary to the one taken in [1]. It is also an important justification

of this note that our results are logically independent of any CY results (although, they are

certainly inspired by them) and hence they hold true whether or not a certain HF manifold

is thought of as adiabatic deformation of some CY. Our result is also independent of any

arguments based on the Gukov superpotential.

Our conclusions are essentially the product of two results: Hitchin’s theorem about

the relationship between G2-holonomy cylinders and HF manifolds [15], and Hull’s obser-

vations [13] regarding the nature of ambiguity in the Green-Schwarz anomaly cancellation

condition.

In the next section we present our argument, relegating a technicality to an appendix.

2. A standard embedding on half-flat manifolds

We start by asking the following question: what is the ten-dimensional space-time whose

low-energy dynamics is described by the effective action of E8 ×E8 heterotic string theory

on HF manifolds?3 In the type II context supergravity no-go theorems forbid R
1,3 as a

solution to the effective theory. In fact the BPS solution turns out to be a domain wall [16].

This solution can be taken over to the heterotic setting easily with the adjustment of the

standard embedding described below. Thus it is clear that the ten-dimensional solution

that is relevant for the case at hand is the lift of the domain wall which is the direct product

space-time R
1,2 × Z7 where Z7 is a G2-holonomy generalized cylinder4 with the natural

metric

ds2 = gMNdx
MdxN

= dz2 + g(z, y)mndy
mdyn

(2.1)

where xM with M = 1, . . . , 6, z are coordinates on Z7 and ym with m = 1, . . . , 6 are

coordinates on six dimensional hypersurfaces zM6 with the metric g(z, y)mn for a fixed

value of z. Then according to Hitchin [15] zM6 are HF manifolds.

We now verify that the above metric ansatz satisfies the supersymmetry conditions.

The supersymmetry conditions, in the variables of [11, 14], are:

δψ
M̂

= ∇
M̂
η +

1

32φ

(
Γ

M̂
P̂ Q̂R̂ − 9δP̂

M̂
ΓQ̂R̂

)
H

P̂ Q̂R̂
ǫ

= 0

δλ =
1√
2φ

(
−ΓM̂∂

M̂
φ+

1

8
ΓP̂ Q̂R̂H

P̂ Q̂R̂

)
ǫ = 0

δχ = − 1

4
√
φ

ΓP̂ Q̂F
P̂ Q̂
ǫ = 0

(2.2)

3In this paper the label ‘effective action’ is used in two different contexts. First, there is the ten-

dimensional effective action, which is the ten-dimensional supergravity action with the relevant anomaly

cancellation terms. Secondly, there is the four-dimensional effective action which one obtains from dimen-

sionally reducing a ten-dimensional effective action on a six-manifold with SU(3) structure. It should be

clear from the context which effective action we are referring to.
4The term ‘generalized cylinder’ was introduced in [17] to describe space-times whose metric has the

form of eq. (2.1).
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where the hatted Latin indices cover all ten dimensions of space-time. ∇
M̂

is the ten-

dimensional Levi-Civita connection. ψ
M̂

, λ and χ denote the gravitino, dilatino and gaug-

ino fields, respectively. ǫ is the local supersymmetry parameter. F
P̂ Q̂

is the Yang-Mills

field with gauge indices suppressed, φ is the dilaton and H
P̂ Q̂R̂

is the three-form gauge field

given by:

H = dB + O(ω) −O(A) (2.3)

with B, O(ω) and O(A) as the two-form potential, Chern-Simons 3-forms in the Lorentz

and the gauge sectors, respectively. The Γ’s above are the antisymmetrized Dirac matrices

(i.e., Clifford algebra elements.) We are also using units in which the gravitational and

Yang-Mills coupling constants are chosen to be unity.

The second equation of (2.2) is satisfied by choosing an ansatz dφ = H = 0. With this

choice in the R
1,2 ×Z7 background it is easy to see that the gravitino variation condition

(the first equation of (2.2)) is satisfied. On Z7 the Majorana spinor ǫ satisfies

∇7
M ǫ = 0 (2.4)

where ∇7 is the Levi-Civita connection on Z7. The integrability condition for the above

equation is

R7
MNPQΓPQǫ = 0. (2.5)

where ΓPQ is the antisymmetrized product of two Dirac matrices on Z7. These equations

imply that the Riemannian holonomy group of Z7 is contained in G2. To solve the gaugino

supersymmetry condition we adopt

A = ω7 (2.6)

where A is the E8 × E8 Yang-Mills gauge potential and ω7 is the spin-connection with

G2 holonomy that corresponds to the Levi-Civita connection ∇7. This is the standard

embedding for G2 holonomy background. Because of (2.5) and (2.6) we then have

FMNΓMNǫ = 0. (2.7)

Thus we see that the remaining condition, the last equation of (2.2), is satisfied.

The choice eq. (2.6) then leads to the Green-Schwarz anomaly condition

dH = trR ∧R− 1

30
TrF ∧ F (2.8)

being satisfied with H = 0.

What we have outlined above is a special case of an ‘instanton’ solution explored in

more detail in [18]. If we were interested in the three dimensional effective action of the

compactification on a (say, compact) G2 holonomy manifold then the above construction

would lead E8 × E8 to break down to F4 × E8. This is because the commutant of G2 in
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E8 is F4. This would be consistent with the fact that there is no notion of chirality in

three dimensions (since F4 doesn’t lead to chiral multiplets). However, we are interested in

knowing what is the condition that descends on the HF slices zM6 from the condition (2.6).

Since HF manifolds are manifolds with SU(3) structure there must exist an almost

complex structure Jm
n and a complex three-form Ωpqr which is of type (3,0) with respect

to the almost complex structure. These quantities are globally defined, or in other words,

there must be a connection ∇̃6 with respect to which these quantities are covariantly

constant:

∇̃6
mJp

q = 0

∇̃6
mΩpqr = 0.

(2.9)

This is equivalent to the statement that there exists a globally defined Majorana spinor ǫ′

which is also covariantly constant

∇̃6
mǫ

′ = 0. (2.10)

J and Ω can be expressed as bilinears of ǫ′ (see our appendix for more details). However

the connection appearing in the above is not the Levi-Civita connection ∇6. It differs from

∇6 by the intrinsic torsion whose detailed form is given in the appendix. The integrability

of the condition of (2.10) is given by

R̃6
mnpqΓ

pqǫ′ = 0. (2.11)

In the above equation R̃6
mnpq is the curvature of the connection ∇̃6. Note that the torsion

term drops out due to (2.10). The globally defined spinor ǫ′ that defines the SU(3) structure

is the same spinor whose constancy in seven-dimensions leads to G2 holonomy,5 i.e.

ǫ′ = ǫ. (2.12)

The above equality is, of course, guaranteed by Hitchin’s theorem [15]. In the appendix we

give an explicit demonstration of the fact that (2.10) indeed follows from (2.4) using the

expressions developed in [5] which relates the intrinsic torsion of zM6 and the extrinsic

curvature of the embedding of zM6 in Z7.

Let us now see what is the condition that descends from (2.6) on the six dimensional

half-flat slices. To see this we rewrite the m = 1, . . . , 6 components of (2.6):

Am = ω7
m. (2.13)

In writing the above relation we have excluded m = z component of (2.6). We have also

suppressed the tangent-space and gauge indices.

For the truncated condition (2.13) to make sense as a six dimensional equation the

right hand side must have an interpretation in six dimensions. In fact it does: it is simply

5In principle, ǫ
′ has ‘space-time’ components as well but we shall not concern ourselves with the product

structure of ǫ
′ in terms of spinors in R

1,2 and Z7.
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the torsionful spin-connection whose holonomy is SU(3). Thus we conclude that the seven

dimensional standard embedding implies the following condition on the HF slices:

A = ω̃6 (2.14)

where ω̃6 is the metric-compatible torsionful spin-connection whose holonomy is SU(3).

Note that this is not a Riemannian holonomy group.

Some time ago, it was pointed out by Hull [13] that the anomaly in a gauge theory is

always ambiguous up to a change of the connection by a tensor quantity. Changing to a

new connection in the action (and hence the path-integral) simply implies a corresponding

change in the counter-term that is needed to cancel the anomaly.

With the condition chosen in (2.14) the Green-Schwarz anomaly cancellation condition

is then no longer (2.8) but is instead given by

dH̃ = trR̃6 ∧ R̃6 − 1

30
TrF ∧ F (2.15)

with R̃6 being the same curvature that appeared in (2.11). H̃ in the above equation is

defined by

H̃ = dB + O(ω̃6) −O(A) (2.16)

The ‘new’ anomaly cancellation condition (2.15) is then solved by H̃ = 0 and (2.14). This

implies that the ten-dimensional low-energy effective theory natural for half-flat manifolds

is a theory that is different from the ones that are usually considered in the literature. We

refer to Hull’s original paper [13] for more details about the steps in obtaining this ‘new’

effective action. We hope to present this effective action in a future publication [6].

This leads us to the main conclusion of this paper:

Equation (2.14) is then a valid standard embedding on HF manifolds. Since the holonomy

of ω̃6 is SU(3), eq. (2.14) implies E8 × E8 breaks down to E6 × E8 just as in the case of

CY compactifications.

3. Conclusions and outlook

In this paper we have argued that the ten dimensional solution that corresponds to the

compactification of E8 × E8 heterotic string theory on a half-flat manifold is the direct

product space-time R
1,2 × Z7 where Z7 is a generalized cylinder with G2 holonomy à la

Hitchin [15]. The supersymmetry conditions and the Green-Schwarz anomaly cancella-

tion condition are then satisfied by embedding the Levi-Civita connection of Z7 in the

gauge connection. This implies a standard embedding on the half-flat slices which is given

by (2.14) which leads to the breakdown of E8 ×E8 to E6 ×E8. However, this implies that

the natural variables for HF manifolds are not any of the standard formulations of the

ten-dimensional low-energy effective actions of heterotic string theory. But the existence

of such a formulation is guaranteed by an ambiguity in the Green-Schwarz anomaly [13].

It is important to note that, unlike [1], we did not assume that the HF manifolds had to be

some sort of ‘small’ or ‘adiabatic’ deformation of an underlying CY. Once the ansatz (2.14)

– 6 –
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is adopted the anomaly cancellation condition is satisfied exactly up to O(α′). Our results

are valid for any half-flat manifold (including nilmanifolds). However, for phenomenologi-

cal purposes one is mainly interested in HF mirror manifolds. It is our hope that the fact

the approach taken here is independent of some of the approximations made in [1] puts

their effort on firmer ground.

Since the full ten dimensional solution breaks down to F4 × E8, it is a prediction

of our work that the domain wall solutions of the effective theory on HF manifolds will

spontaneously break E6 down to F4. To see this more clearly recall that in the type II

setting the BPS ‘ground-state’ of the low energy effective theory are domain walls [16].

We expect the same to be true in the heterotic string. Since the four dimensional solution

must lift up to R
1,2 × Z7 with the gauge fields given by (2.6) it follows that the ground-

state will break E6 down to F4. How this is actually implemented in the four-dimensional

effective action will be presented in a following paper [6]. This prediction is in contrast

with that of [1] where they argue that E6 should spontaneously break down to SO(10).

In passing we note that the decomposition of E8 in terms of F4 and G2 which comes out

of HF manifolds is reminiscent of the group-structure of the unification scenario recently

proposed by Lisi [19].

Because our conclusions are based on a bona fide ten-dimensional solution one cannot

a priori comment on the standard embeddings on SU(3) manifolds more general than HF

manifolds. In our view one needs to first look at the ten-dimensional solutions before

making ansätze for dimensional reductions on six dimensional manifolds with an arbitrary

SU(3)-structure. In light of the swamp-land conjecture [20] it is important, in our opinion,

to keep in the background the full ten-dimensional solution.

Since the ten-dimensional effective actions for heterotic string theories contain higher

order curvature terms it is not immediately clear that, despite our standard embedding, all

the curvature dependent terms are computable on HF mirror manifolds. However, since the

Ricci-curvature for HF manifolds have now been computed in terms of variables familiar

from CY compactifications [5] it seems not unlikely that one can compute the effective

action in these new variables. This effective action would be a consistency check of the one

derived in [1] and would perhaps be related to the latter action by a change of variables.

This and other issues are now under investigation [6].

Note Added. After our paper appeared on the archives, it was brought to our attention

that similar results were presented in [21] for a sub-class of half-flat manifolds known as

nearly Kähler manifolds.
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We are interested in the six-dimensional condition that descends from the seven-dimensional
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standard embedding that we discussed above. Hitchin’s theorem implies that the relevant

connection in six dimensions is the one with torsion. In this section we verify that explicitly.

For more details on the origin of the following formulae the reader is referred to [5].

An SU(3) manifold admits a globally defined two form J (related to an almost complex

structure Jm
n) and a complex three form Ω = Ω++ iΩ− which is of type (3, 0) with respect

to Jm
n. On a Calabi-Yau manifold both of these forms are closed. On a half-flat manifold

one has instead

J ∧ dJ = 0

dΩ− = 0
(A.1)

To show that (2.10) follows from (2.4):

∇7
M ǫ = 0 (2.4)

we start by looking at the components of this latter equation lying along the half-flat

slices:

∇7
mǫ = 0. (A.2)

Since m = 1, . . . , 6, the above equation is not obviously tensorial in six dimensions.

Let us denote by ∇6 the Levi-Civita connection in six-dimensions. The Gauß-Weingarten

equation then gives [5]:

∇7
mǫ = ∇6

mǫ+
1

2
Kn

mΓnΓ7ǫ. (A.3)

Where Kmn is the second fundamental form of the embedding of the half-flat manifold

in a G2 holonomy cylinder. In [5] it was shown that for half-flat manifolds the intrinsic

contorsion κrst (which is equivalent to the intrinsic torsion) is related to Kmn via

κrst =
1

2
Km

r Ω+
mst (A.4)

and its inverse

Kp
r =

1

2
Ω+pstκrst. (A.5)

where Ω+ is the real part of the three form Ω. Then (A.3) becomes

∇7
mǫ = ∇6

mǫ+
1

4
Ω+nstκmstΓnΓ7ǫ. (A.6)

We shall now show the connection on the right hand side (and hence the truncated con-

nection on the left hand side) has SU(3) holonomy. Let us first recall the following Clifford

algebra identities:

Γmnp = ΓmnΓp + gpmΓn − gpnΓm

= ΓmΓnp + gpmΓn − gmnΓp

(A.7)

We also need the following Fierz identity, which is simply a statement of the decomposition

of identity on spinorial vector space in six spatial dimensions:

18×8 = ǫǭ+ Γ7ǫǭΓ
7 + ΓmǫǭΓ

m (A.8)

– 8 –
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We can now consider

ΓmnΓ7ǫ =
{
ǫǭ+ Γ7ǫǭΓ

7 + ΓrǫǭΓ
r
}

ΓmnΓ7ǫ

= ǫǭΓmnΓ7ǫ+ ΓrǫǭΓ
rΓmnΓ7ǫ

(A.9)

where in going from the first line to the second we have used the fact that for any commuting

Majorana spinor ǫ in six dimensions we have

ǭΓ7ΓmnΓ7ǫ = ǭΓmnǫ = 0. (A.10)

Next we use the following definitions (defined in [5])

Jmn = iǭΓ7Γmnǫ

Ω+
mnp = ǭΓmnpΓ7ǫ

(A.11)

in the above identity and obtain

Γmnǫ = −iJmnΓ7ǫ− Ω+
rmnΓrΓ7ǫ. (A.12)

Using this in (A.3) we get

∇7
mǫ = ∇6

mǫ+
1

4
κmst

{
−iJstΓ7 − Γst

}
ǫ. (A.13)

In [2] it was shown that the torsion or the contorsion on an SU(3) manifold decomposes

into five SU(3) modules. On a half-flat manifold some of these modules survive which

we denote by W+
1

, W+
2

and W3. More details on these modules relevant for the present

computation can be found in [5]. Here we note that W+

1
is a real scalar, W+

2
is a real,

primitive (1,1)-type 2-form and W3 is a complex, primitive (2,1)-type 3-form. Now it is

clear from the following expression of the contorsion tensor on a half-flat manifold [5]

κsrt =
1

4
W+

1
Ω+

srt +
1

4
(W+

2
)sqΩ

q
rt

+
i

2

{
(W3)suvΠ

+
r

uΠ+
t

v − (W 3)suvΠ
−

r
uΠ−

t
v
} (A.14)

that

Jrtκsrt = 0. (A.15)

Thus (A.13) becomes

∇7
mǫ = ∇6

mǫ−
1

4
κmstΓ

stǫ

≡ ∇̃6
mǫ.

(A.16)

As a consequence of (2.4) we have for the connection ∇̃ with contorsion κ

∇̃6
mǫ = 0 (A.17)

which means that the holonomy of ∇̃6 is SU(3). Hence ǫ = ǫ′ where the latter is the

globally defined spinor on the HF manifold which determines its SU(3) structure.
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